POLYMETHINE DYES DERIVED FROM HETEROCYCLIC BASES CONTAINING CONDENSED THIOPHENE RINGS

VII. Thionaphthenopyrid-3-yl and Thienothienopyrid-6-yl Derivatives*

V. G. Zhiryakov and P. I. Abramenko

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 5, No. 3, pp. 491-497, 1969

UDC 541.651:547.735.736.737:543.422.6

The synthesis of polymethine dyes of the cyanine and merocyanine series derived from 3-methylthionaphtheno[2,3-b]pyridine, 3-methylthionaphtheno[3,2-b]pyridine, 6-methylthieno[2,3-b]thieno[2,3-b]-pyridine, and 6-methylthieno[3,2-b]thieno[2,3-b]pyridine is described. The color of the dyes obtained is discussed. It has been shown that the replacement of vinylene groups by sulfur atoms in one of the two benzene rings of the hetero residue in 2-substituted 5,6-benzoquinolines in cyanine dyes leads to a bathochromic shift of the absorption maxima.

We have described polymethine dyes derived from 5- and 6-substituted thienopyridines previously [1]. It

Table 1

Absorption Maxima of the Carbo- and Dicarbocyanines in Ethanol

	λ_{\max}	nm
Z in formula I	n=1	n=2
5, 6-Benzoquinol-2-yl	634[4]	
Thionaphtheno[2, 3-b]pyrid-3-yl	648	743
Thionaphtheno [3,2-b] pyrid-3-yl	668	780
Thieno[2, 3-b]thieno[2, 3-b]pyrid-6-yl	650	742
Thieno[3,2-b] thieno[2, 3-b]pyrid-6-yl	656	760
Thionaphtheno[3, 2-b]pyrid-3-yl	665*	_
Thieno[2, 3-b]thieno[2, 3-b]pyrid-6-yl	646*	_

^{*}Methanol.

was shown that the absorption maxima of such dyes are displaced into the long-wave part of the spectrum as compared with the corresponding 2-substituted quinoline derivatives. In the present paper we describe the synthesis of polymethine dyes of the cyanine and merocyanine series of structures I and II derived from new heterocyclic bases containing condensed thiophene rings: 3-methylthionaphtheno[2, 3-b]- and

[3, 2-b]pyridines (III, IV) [2] and 6-methylthieno[2, 3-b]-thieno[2, 3-b]- and -thieno[3, 2-b]thieno[2, 3-b]pyridines (V, VI) [3].

The positions of the absorption maxima of the carboand dicarbocyanine dyes derived from the bases synthesized, and also from bases isosteric with them are given in Table 1.

The data of Table 1 show that the replacement of vinylene groups by sulfur atoms in one or two benzene rings of the residues of 2-methyl-5,6-benzoquinoline in the cyanines causes a bathochromic shift of the absorption maxima of the dyes. Dyes with residues of thionaphtheno[3,2-b]- or thieno[3,2-b]thieno[2,3-b]- pyridine have somewhat deeper colors than the corresponding derivatives of thionaphtheno[2,3-b]- or thieno[2,3-b]thieno[2,3-b]pyridine. As usual, the replacement of the ethyl group on the heterocyclic nitrogen atom by a methyl group has practically no influence on their coloration. The vinylene shift of the absorption maximum on passing from the carboto the dicarbocyanines retains its usual value of about 100 nm.

Table 2
Absorption Maxima of the Merocyanines in Ethanol

		λ _{max} , nm		-
Z in formula II	meroc	yanines	cyanines	Hypsochromic shifts, nm
	n=1	n=2	n=1	n=1
5, 6-Benzoquinol-2-yl Thionaphtheno[2, 3-b]pyrid-3-yl Thionaphtheno[3,2-b] pyrid-3-yl Thieno[2, 3-b]thieno[2, 3-b]pyrid-6-yl Thieno[3, 2-b]thieno[2, 3-b]pyrid-6-yl	584 586 605 581 588	684 706 682 685	635[4] 648 668 650 656	4.5 9.0 0 15 11

Note: the hypsochromic shifts are the deviations of the absorption maxima of the dimethylmerocyanines from the arithmetic mean values calculated from the absorption maxima of the corresponding carbocyanines (n = 1) and the monomethine oxanine derived from 3-ethylrhodanine [5] (λ_{max} at 542 nm in ethanol).

^{*}For part VI, see [8].

Table 3
Characteristics of the Cyanine Dyes

		Amount				_		-	
			I				ź	Se l	
Formula	quaternar) salt	substance forming the chain	solvent, m	External form	Mp, C (decomp.)	Empirical formula	punoj	calculated	Yield,
- CH =- CH CH =- CH -	0.71	0.7	8	Dark blue prisms	277278	C29H25IN2S2	4.59	4.72	31
C_2H_3 $CH = CH - CH = $	0.71	0.7	∞	Dark blue prisms	259—260	C29H251N2S2	4.62	4.72	29.3
=CH - CH -	0.70	9.0	ro	Dark blue prisms	214-215	C ₂₇ H ₂₁ 1N ₂ S ₂	4.78	4.94	28.6
CH_3 $-(CH=CH)_2-CH = CH_3$ CH_3	0.45	0.75	ro	Dark blue prims	220—221	C ₃₁ H ₂₇ 1N ₂ S ₂	4.41	4.53	21.6
$= CH)_2 - CH = CH_2$ $C_0 H_2$	0.56	0.2	3.0	Dark blue prisms	210—211	C ₃₁ H ₂₇ IN ₂ S ₂	4.38	4.53	10.3
= CH - CH = CH - CH - CH - CH - CH - CH	0.72	0.70	ro	Dark blue prisms	230232	C25H211N2S4	4.51	4.63	26.8

		Yield,	14.6	81	9.6	10.3		
	88	calculated	4.63	4.85	6.50	6.50		
	ž	bnuoî	4.59	4.71	6.39	6.36		
		Empirical formula	C25H21IN2S4	C23H171N2S4	C27H23IN2S4	C27 H23-1N2S4		
		Mp, °C (decomp.)	265—267	241243	244—246	217219	. A splanter register.	
Table 3 (Cont'd.)		External form	Green prisms	Dark blue needles	Dark blue prisms	Dark blue prisms		
able 3		solvent, ml	1.5	က	7.0	3.0		
T	Amount	substance forming the chain	0.3	9.0	0.4	0.24		
		quaternary salt	0.36	0.68	96.0	0.56		
		Formula	-снснсн	$\int_{S}^{c_2 H_5} \int_{I}^{c_2 H$	$(CH = CH)_2 - CH = $	$\begin{cases} c_2 n_5 \\ c_2 n_5 \\ c_2 n_5 \end{cases} - (CH = CH)_2 - CH = \begin{pmatrix} c_2 n_5 \\ 1 \\ 1 \\ 1 \\ 1 \end{cases}$		

			Yield, %	59	99	18	16	43
		%	calcu- lated	7.03	7.03	6.59	6.59	7.13
		ĸ,	found	6.93	6.91	6.41	6.39	7.10
			Mp (decomp.), Empirical formula °C	$C_{20}H_{18}ON_2S_3$	C20H18ON2S3	C22H20ON2S3	C22H20ON2S3	C22H20ON2S2
	Ø		Mp (decomp.), °C	270—271	264—265	246—247	256—258	243—245
Table 4	Characteristics of the Merocyanine Dyes		External form	Violet needles	Violet needles	Green prisms	Light green plates	Violet needles
-	stics c		sol- vent, ml	10	10	20	30	5.0
	haracteri	Amount	3-ethylrho- danine derivative, g	09.0	0.60	0.65	0.65	0.15
	C		quater- nary salt, g	0.71	0.71	0.70	0.70	0.18
			Formula	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} CH - CH = \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	C_2H_5 C_2H_5 C_2H_5	$\begin{array}{c} \begin{array}{c} CH \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	C ₂ H ₅ CH - CH	C. H. C. H. = C. H. = C. H. S.

_
$\overline{}$
$^{\circ}$
-
4
$\overline{}$
0
r٦
$\mathbf{\mathcal{I}}$
$\overline{}$
4
Φ
-
9
ab

			Table	Table 4 (Cont'd.)					
		Amount					z	%	
Formula	quater- nary salt, g	3-ethylrho- danine derivative,	sol- vent, ml	External form	Mp (decomp.)	Empirical formula	punoj	calcu- lated	Yield, %
S = CH - CH -	0.72	09.0	01	Dark violet prisms	241243	C ₁₈ H ₁₆ N ₂ OS ₄	6.83	6.92	49.6
C_2H_5 C_2H_5	0.72	09:0	01	Dark violet prims	259—261	C ₁₈ H ₁₆ N ₂ OS ₄	6.81	6.92	41.3
$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	0.70	0.65	40	Light green prisms	247—249	C20H18N2OS4	6.43	6.50	13.9
$C_2H_3 = CH - CH -$	0.70	0.65	40	Green prisms	241243	C20H18N2OS4	6.37	6.50	14.6

Table 2 gives the positions of the absorption maxima of the merocyanine dyes derived from the 3-methyl-thionaphtheno- and 6-methylthienothienopyridines and also those of dyes isosteric with them and the hypsochromic shifts calculated for them.

It can be seen from Table 2 that the di- and tetramethine merocyanines with a thieno[3, 2-b]thieno[2, 3-b]pyrid-6-yl residue or with the isomeric thionaphthenopyrid-3-yl residues have a deeper coloration than the dyes derived from 2-methyl-5, 6-benzoquinoline that are isosteric with them, just as in the case of the cyanines.

With a decrease in the polarity of the solvent, the absorption maxima of the dimethine merocyanine dyes described shift first in the long-wave direction and then in the short-wave direction. This shows that the structure of these dyes in ethanol approximates to an internally ionic structure. A comparison of the values of the hypsochromic shifts given in Table 2 shows that the basicities both of the thionaphtheno[2,3-b]-pyrid-3-yl residue and of the isomeric thienothienopyrid-6-yl residue are somewhat higher than the basicity of the 5,6-benzoquinol-2-yl residue. However, the thionaphtheno[3,2-b]pyrid-3-yl residue is probably less basic than the residues of the other bases described.

EXPERIMENTAL

Cyanine dyes. The carbocyanines were synthesized by condensing the alkyl iodide derivatives of the bases with ethyl orthoformate in nitrobenzene (see [6]) at 180-185° C for 20-40 min. The dicarbocyanines were obtained by the reaction of the ethiodides of the bases with the hydrochloride of the dianil of malonaldehyde (see [7]) in acetic anhydride at 120-130° C for 30-60 min in the presence of triethylamine. For purification, the dyes were chromatographed on alumina in chloroform and were then crystallized from ethanol. Some constants and the results of the analyses of the dyes are given in Table 3.

The merocyanine dyes (Table 4). The dimethine merocyanines were obtained by condensing the ethiodides of the bases with the 5-acetanilinomethylene derivatives of 3-ethylrhodanine in absolute ethanol in the presence of triethylamine with heating in the boiling water bath for 30-60 min. The tetramethine merocyanines were synthesized similarly by condensing the ethiodides of the bases with 5-(y-acetanilinoallylidene)-3-ethyl-4-oxothiazolidine-2-thione in absolute ethanol. For purification, before crystallization from ethanol the dyes were chromatographed on alumina in chloroform solution.

REFERENCES

- 1. V. G. Zhiryakov, P. I. Abramenko, and N. I. Sennikova, USSR patent no. 175820; Byull. izobr., no. 20, 1965.
- 2. V. G. Zhiryakov and P. I. Abramenko, KhGS [Chemistry of Heterocyclic Compounds], 1, 334, 1965.
- 3. V. G. Zhiryakov, P. I. Abramenko, and G. F. Kurepina, USSR patent no. 165731; Byull. izobr., no. 20, 1964.
- 4. N. I. Fischer and F. M. Hamer, Proc. Roy. Soc. (London), 154A, 703, 1936.
- 5. M. V. Deichmeister, I. I. Levkoev, and E. B. Lifshits, ZhOKh, 23, 1529, 1953.
- 6. A. van Dormael and J. Libeer, Sci. Ind. Phot., 20 (2), 451, 1949.
- 7. T. Ogata, Proc. Imp. Acad. Tokyo, 8, 421, 1932.
- 8. V. G. Zhiryakov and P. I. Abramenko, KhGS [Chemistry of Heterocyclic Compounds], 5, 488, 1969.

7 December 1966

All-Union Scientific-Research Institute for the Chemical and Photographic Industry, Moscow